CUHK Department of Mathematics
 Enrichment Programme for Young Mathematics Talents 2019
 Number Theory and Cryptography (SAYT1114)
 Quiz 1

- The total score for the quiz is $100+20$ (20 points for the bonus question).
- If you obtain X points, your score will be $\min (X, 100)$.
- Time allowed: $(60+\varepsilon)$ minutes.
- The use of calculator is allowed.
- Unless otherwise specified, all variables defined in the quiz paper are integers.

Q1. ($\mathbf{1 0}$ points) True or false. For each of the statements below, determine if it is true or false. You are not required to justify your answer.
(a) (2 points) Given a, b where $b>0$. Then there exists a unique pair of integers (q, r) such that $a=q b+r$ and $0<r \leq b$.
(b) (2 points) Given a, b, c where $c \neq 0$. If $c \nmid a+b$, then $c \nmid a$ and $c \nmid b$.
(c) (2 points) Let $a, b \neq 0$. If $a \mid b$ and $b \mid a$, then $a=b$.
(d) (2 points) $\operatorname{gcd}\left(a, 1-a^{2}\right)=1$ for all integers a.
(e) (2 points) Given $a, b, c>0$ such that $c=a+b$. Then $\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)$.

Q2. (10 points) Fill in the blanks to complete the following definitions and theorem statements. Each blank is worth 2 points.
(Definition of Divisibility) Let a and b be integers, $a \neq 0$. We say a divides b if there exists

$$
\text { (a) } \quad \text { In this case we write } a \mid b \text {. }
$$

(Bézout's Identity) Let m and n be integers, not both zero. Then there exists integers x and y such that \qquad $=g c d(m, n)$.
(Euclid's Lemma) Let a, b, c be integers, $a \neq 0$. If $a \mid b c$ and _(c)_, then $a \mid b$. (Fundamental Theorem of Arithmetic) Given integer $n>1$. Then we can write $n=p_{1} \ldots p_{r}$, where each p_{i} is a/an \qquad . Furthermore, the expression is \qquad .

Q3. (30 points) Let $a:=3990$ and $b:=728$.
(a) (10 points) Let $g:=g c d(a, b)$. Using the Euclidean algorithm, find g.
(b) (10 points) Using the calculation in (a), find one solution to the linear Diophantine equation $3990 x+728 y=g$.
(c) (10 points) Hence, find all solutions to the following linear Diophantine equations.
(i) (5 points) $3990 x+728 y=56$
(ii) (5 points) $3990 x+728 y=104$

Q4. (25 points) Prove the following statements. If you use the Fundamental Theorem of Arithmetic, at most 60% of the points will be awarded.
(a) (5 points) Given a, b, c, d with $a, b \neq 0$. Suppose $a \mid c$ and $b \mid d$. Then $a b \mid c d$.
(b) (10 points) Given a, b, c, all nonzero. Then $\operatorname{lcm}(l c m(a, b), c)=l c m(a, l c m(b, c))$.
(c) (10 points) Given a, b, c, d, all nonzero. Then $\operatorname{gcd}(a, c) \operatorname{gcd}(b, d) \mid g c d(a b, c d)$.

Q5. (25 points) Given positive integers n and m, such that n is a perfect square, $m \mid n$, and m is square-free (that is, $a^{2} \nmid m$ for all $a>1$).

By the Fundamental Theorem of Arithmetic, we can find primes p_{i} and non-negative a_{i} and b_{i} $(1 \leq i \leq r)$, such that $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$ and $m=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$.
(a) (6 points) Translate the three given conditions into conditions on a_{i} and b_{i}.
(b) (8 points) Prove that $m^{2} \mid n$. (Hint: prove that $a_{i} \geq 2 b_{i}$ for each i.)
(c) (3 points) For each $k \geq 3$, find a counter-example to the following statement: Given positive integers n and m, such that n is a perfect k-th power, $m \mid n$, and m is k-th power-free (that is, $a^{k} \nmid m$ for all $a>1$). Then $m^{k} \mid n$.
(d) (8 points) Prove the following "correct" generalization: Given positive integers n and m, such that n is a perfect k-th power, $m \mid n$, and m is square-free (that is, $a^{2} \nmid m$ for all $a>1)$. Then $m^{k} \mid n$.

Q6 (Bonus Question). (20 points) Given $a, b>0$ where $\operatorname{gcd}(a, b)=1$. For $c \geq 0$, we are interested in the existence of non-negative integer solutions to $a x+b y=c$.
(a) (5 points) Consider an example: $a:=5, b:=7$. Copy the following table to your answer book. Circle all values of c for which $5 x+7 y=c$ has no non-negative integer solutions.

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34

(b) (15 points) Prove the following statements. Partial credit will be awarded for stating "meaningful" observations from part (a).
(i) (9 points) If $c \geq(a-1)(b-1)$, then $a x+b y=c$ has non-negative integer solution.
(ii) (6 points) There are exactly $\frac{(a-1)(b-1)}{2}$ values of c for which $a x+b y=c$ has no non-negative integer solutions.

The End

