CUHK Department of Mathematics Enrichment Programme for Young Mathematics Talents 2019 Number Theory and Cryptography (SAYT1114) Quiz 1

- The total score for the quiz is 100 + 20 (20 points for the bonus question).
- If you obtain X points, your score will be $\min(X, 100)$.
- Time allowed: $(60 + \varepsilon)$ minutes.
- The use of calculator is allowed.
- Unless otherwise specified, all variables defined in the quiz paper are integers.

Q1. (10 points) True or false. For each of the statements below, determine if it is true or false. You are **not** required to justify your answer.

- (a) (2 points) Given a, b where b > 0. Then there exists a unique pair of integers (q, r) such that a = qb + r and $0 < r \le b$.
- (b) (2 points) Given a, b, c where $c \neq 0$. If $c \nmid a + b$, then $c \nmid a$ and $c \nmid b$.
- (c) (2 points) Let $a, b \neq 0$. If $a \mid b$ and $b \mid a$, then a = b.
- (d) (2 points) $gcd(a, 1 a^2) = 1$ for all integers a.
- (e) (2 points) Given a, b, c > 0 such that c = a + b. Then gcd(a, c) = gcd(b, c).

Q2. (10 points) Fill in the blanks to complete the following definitions and theorem statements. Each blank is worth 2 points.

(Definition of Divisibility) Let a and b be integers, $a \neq 0$. We say a divides b if there exists (a) . In this case we write $a \mid b$.

(Bézout's Identity) Let m and n be integers, not both zero. Then there exists integers x and y such that (b) = gcd(m, n).

(Euclid's Lemma) Let a, b, c be integers, $a \neq 0$. If $a \mid bc$ and <u>(c)</u>, then $a \mid b$. (Fundamental Theorem of Arithmetic) Given integer n > 1. Then we can write $n = p_1 \dots p_r$, where each p_i is a/an (d) . Furthermore, the expression is (e) . **Q3.** (30 points) Let a := 3990 and b := 728.

- (a) (10 points) Let g := gcd(a, b). Using the Euclidean algorithm, find g.
- (b) (10 points) Using the calculation in (a), find **one** solution to the linear Diophantine equation 3990x + 728y = g.
- (c) (10 points) Hence, find all solutions to the following linear Diophantine equations.
 - (i) (5 points) 3990x + 728y = 56
 - (ii) (5 points) 3990x + 728y = 104

Q4. (25 points) Prove the following statements. If you use the Fundamental Theorem of Arithmetic, at most 60% of the points will be awarded.

- (a) (5 points) Given a, b, c, d with $a, b \neq 0$. Suppose $a \mid c$ and $b \mid d$. Then $ab \mid cd$.
- (b) (10 points) Given a, b, c, all nonzero. Then lcm(lcm(a, b), c) = lcm(a, lcm(b, c)).
- (c) (10 points) Given a, b, c, d, all nonzero. Then $gcd(a, c)gcd(b, d) \mid gcd(ab, cd)$.

Q5. (25 points) Given positive integers n and m, such that n is a perfect square, $m \mid n$, and m is square-free (that is, $a^2 \nmid m$ for all a > 1).

By the Fundamental Theorem of Arithmetic, we can find primes p_i and non-negative a_i and b_i $(1 \le i \le r)$, such that $n = p_1^{a_1} \dots p_r^{a_r}$ and $m = p_1^{b_1} \dots p_r^{b_r}$.

- (a) (6 points) Translate the three given conditions into conditions on a_i and b_i .
- (b) (8 points) Prove that $m^2 \mid n$. (Hint: prove that $a_i \geq 2b_i$ for each i.)
- (c) (3 points) For each $k \ge 3$, find a counter-example to the following statement: Given positive integers n and m, such that n is a perfect k-th power, $m \mid n$, and m is k-th power-free (that is, $a^k \nmid m$ for all a > 1). Then $m^k \mid n$.
- (d) (8 points) Prove the following "correct" generalization: Given positive integers n and m, such that n is a perfect k-th power, $m \mid n$, and m is square-free (that is, $a^2 \nmid m$ for all a > 1). Then $m^k \mid n$.

Q6 (Bonus Question). (20 points) Given a, b > 0 where gcd(a, b) = 1. For $c \ge 0$, we are interested in the existence of non-negative integer solutions to ax + by = c.

(a) (5 points) Consider an example: a := 5, b := 7. Copy the following table to your answer book. Circle all values of c for which 5x + 7y = c has **no** non-negative integer solutions.

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34

- (b) (15 points) Prove the following statements. Partial credit will be awarded for stating "meaningful" observations from part (a).
 - (i) (9 points) If $c \ge (a-1)(b-1)$, then ax + by = c has non-negative integer solution.
 - (ii) (6 points) There are exactly $\frac{(a-1)(b-1)}{2}$ values of c for which ax + by = c has no non-negative integer solutions.

The End